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Casilla 306, correo 22 - Santiago, CHILE
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Abstract

In this work we consider the nonautonomous problem ∆u = a(x)um in the unit
ball B ⊂ RN , with the boundary condition u|∂B = +∞, and m > 0. Assuming that a
is a continuous radial function with a(x) ∼ C0 dist(x, ∂B)−γ as dist(x, ∂B) → 0, for
some C0 > 0, γ > 0, we completely determine the issues of existence, multiplicity and
behaviour near the boundary for radial positive solutions, in terms of the values of m
and γ. The case 0 < m ≤ 1, as well as estimates for solutions to the linear problem
m = 1, are a significant part of our results.

1. Introduction

This paper is concerned with the study of some semilinear elliptic problems with boundary
blow-up, of the form {

∆u = a(x)um in Ω
u = +∞ on ∂Ω ,

(1.1)

where Ω is a smooth bounded domain of RN , a is a locally Hölder continuous positive function
andm > 0. By a solution to (1.1) we understand a function u ∈ C2(Ω) such that u(x) → +∞
when d(x) := dist(x, ∂Ω) → 0+.

∗Supported by FONDECYT projects numbers 1000627, 1000625 and 1000333 (Chile) and FEDER–
MCYT project under contract BFM2001-3894 (Spain).

†E-mail addresses: mchuaqui@mat.puc.cl, ccortaza@mat.puc.cl, melgueta@mat.puc.cl, cflo-
res@gauss.cfm.udec.cl, jjgarmel@ull.es, rletelie@gauss.cfm.udec.cl

1



2 M. Chuaqui et al.

The study of boundary blow up problems was originated in the work of Bieberbach
[5], where a(x) ≡ 1, N = 2 and the nonlinearity um was replaced by eu, in the context
of Riemannian surfaces of constant negative curvature, and in the theory of automorphic
functions. They were later studied under the general form ∆u = f(u) in N -dimensional
domains by Keller [16] and Osserman [23]. The questions of uniqueness and asymptotic
estimates for the concrete equation ∆u = a(x)eu were first treated by [18] and [1].

Problem (1) seems to have been considered for the first time in [20] (with a ≡ 1 and
m = (N + 2)/(N − 2)), and later in [17], [2], [3], [24], [21], [7] (with a ∈ C(Ω), a > 0 in
Ω), [11], [12] (where a = 0 on ∂Ω is permitted) and [8], where the extension to equations
involving the p-Laplacian was considered. In these works uniqueness of positive solutions
is achieved through an estimate of the form u ∼ Cd(x)−α as d(x) → 0. There are also
some more recent papers dealing with general equations ∆u = f(u), for nonlinearities which
conveniently extend f(u) = um and f(u) = eu (see for instance [19], [4] and the list of
references in [25]). On the other hand, some adaptation of these results to the field of
elliptic systems have also been obtained in [6], [9], [10], [13] and [14].

In the works cited above, an important feature of the function a in (1) is that it is bounded.
This in turn implies that m > 1 is a necessary and sufficient condition for the existence (and
also uniqueness) of positive solutions. Our aim here is to remove this condition on a, by
permitting a to be unbounded near ∂Ω. For the purposes of estimates of the solutions, we
are assuming that a(x) ∼ C0d(x)

−γ as d(x) → 0, for some positive constants C0 and γ. As
will be seen below, this allows to have positive solutions even in the case 0 < m ≤ 1.

Under this assumption on a, problem (1.1) was treated in [25], where the existence of
a positive solution was obtained when m > 1 (also for the equation ∆u = a(x)eu), and
in [22] in the context of radial solutions in a ball B (in this last one, some existence and
nonexistence results concerning fairly general problems where shown). However, both in [25]
and [22], no uniqueness or rate of blowup near the boundary have been obtained, and the
case 0 < m ≤ 1 was not considered (the nonlinearity um does not fulfill condition (f-1) in
[22] when 0 < m ≤ 1).

It is worth saying that the methods used in the literature to obtain estimates for positive
solutions to problem (1.1) (see for instance [8], [7], [12] or [14]) do not work when dealing
with weight functions a(x) which blow up on the boundary. Thus obtaining estimates for
solutions in general domains seems to be a hard task.

Hence, to gain some insight into problem (1.1), we restrict ourselves to the case where a
is radial, and will mainly look for radial solutions (the case of a general domain Ω will be
treated in a future work). Thus, we are dealing with{

(rN−1u′)′ = rN−1a(r)um r ∈ (0, 1)
u′(0) = 0, u(1) = +∞ ,

(P )

where m > 0, and the weight function a will be assumed to verify throughout the following
assumption:  a ∈ C[0, 1), a > 0 in [0, 1)

lim
r→1−

(1− r)γa(r) = C0 > 0, for some γ > 0.
(H)

As a first important remark, notice that this hypothesis implies in particular the existence
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of positive constants c, C such that

c(1− r)−γ ≤ a(r) ≤ C(1− r)−γ, r ∈ [0, 1) (1.2)

(hypothesis (H), as well as (1.2) and estimates for all solutions below, could be expressed
in terms of the even function 1 − r2 instead of 1 − r, with a slight change of the constants
involved; however, we have preferred to use 1−r, which express the distance to the boundary
∂B).

We completely characterize the existence, uniqueness or multiplicity of solutions and es-
timates near the boundary for all possible radial positive solutions to (P). As an outstanding
difference with the previous works, we find that in the case m ≤ 1, there are infinitely many
positive solutions, all of them with the same profile near the boundary (compare with [13]).
Also, regarding the asymptotic estimates, the cases m < 1 and m > 1 seem to be completely
“stable”, in the sense that without further assumptions on a aside (H) we can always obtain
estimates for all solutions. The linear case m = 1, on the contrary seems to behave very
badly in this respect, since the estimates can only be obtained in general for the logarithm
of the solutions (cf. Theorem 1.5 and Remark 1.6 below), and estimates for the solution
strongly depend on the nature of second order terms in the asymptotic expansion of a near
r = 1 (Corollary 1.7). Finally, we are able to say something about nonradial solutions in
some cases.

We now state our results. The cases m > 1, m < 1 and m = 1 are presented separately,
because they all possess some proper features of their own.

Theorem 1.1 Assume m > 1 and a verifies hypothesis (H). Then problem (P) has a positive
solution u if and only if γ < 2. The solution is unique and verifies

lim
r→1−

(1− r)αu(r) =

(
α(α + 1)

C0

) 1
m−1

, (1.3)

where α = (2− γ)/(m− 1). Moreover, nonradial positive solutions to (P) do not exist.

Remark 1.2 It follows from the discussion in §3 and a continuity argument that the problem
with finite positive datum n, i.e.{

∆u = a(x)um in B
u = n on ∂B ,

(1.4)

has a unique positive solution un, which verifies un ≤ u, where u is the solution to (P) given
by Theorem 1.1. It is easy to see that un → u as n → +∞, uniformly in Br0 for 0 < r0 < 1.

Theorem 1.3 Assume m < 1 and a verifies hypothesis (H). If γ < 2 then problem (P) has
no positive solutions, while it has infinitely many positive solutions if γ ≥ 2. If γ > 2, all
solutions u verify

lim
r→1−

(1− r)αu(r) =

(
α(α + 1)

C0

) 1
m−1

, (1.5)
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where α = (2− γ)/(m− 1). When γ = 2

lim
r→1−

u(r)

(− log(1− r))β
= (C0(1−m))

1
1−m , (1.6)

where β = 1/(1−m).

Remarks 1.4 a) In contrast with the previous case m > 1, it will be shown in §4.3 that
nonsymmetric solutions to problem (P) exist when N = 1 (compare with [13]). This suggests
that infinitely many nonradial positive solutions could exist when N ≥ 2.

b) On the other hand, as the results in §4.2 show, problem (1.4) never has positive solutions.
This two observations are applicable to the case m = 1 below.

Theorem 1.5 Assume m = 1 and a verifies hypothesis (H). If γ < 2 then problem (P) has
no positive solutions, while it has infinitely many positive solutions if γ ≥ 2. All solutions u
are constant multiples of each other and verify

lim
r→1−

(1− r)δ log u(r) =

√
C0

δ
(1.7)

when γ > 2, with δ = (γ − 2)/2 and

lim
r→1−

log u(r)

− log(1− r)
= σ (1.8)

when γ = 2, where σ = (−1 +
√
1 + 4C0)/2.

Remarks 1.6 A natural question to ask in the linear case is the following: can we obtain
estimates for the behaviour of u (as in Theorems 1 and 2) instead of log u? The following
examples show that the growth of positive solutions near r = 1 can be arbitrarily prescribed,
if the weight a is to satisfy only hypothesis (H).

a) The function u(r) = (1 − r)−σξ(1 − r), where σ = (−1 +
√
1 + 4C0)/2, solves the one-

dimensional version of (P) with the weight

a(r) =
C0

(1− r)2
− 2σ

1− r

ξ′(1− r)

ξ(1− r)
+

ξ′′(1− r)

ξ(1− r)
.

Thus if ξ(t) is positive for t near zero and verifies t2ξ′′(t) − 2σtξ′(t) = o(ξ(t)) as t → 0+, a
fulfills condition (H) (note that we are only interested in positivity near r = 1). Particular
examples are ξ(t) = (log t)τ , τ > 0 and ξ(t) = log(log t).

b) In the same manner, the function u(r) = e
√
C0(1−r)−δ/δξ(1− r) solves (P) with N = 1 and

a(r) =
C0

(1− r)γ
+

(δ + 1)
√
C0

(1− r)δ+2
− 2

√
C0

(1− r)δ+1

ξ′(1− r)

ξ(1− r)
+

ξ′′(1− r)

ξ(1− r)
.

Thus if (δ + 1)
√
C0t

γ/2−1ξ(t) − 2
√
C0δ

−1tγ/2ξ′(t) + tγξ′′(t) = o(ξ(t)) as t → 0+, a verifies
condition (H). Again the functions ξ(t) = (log t)τ , τ > 0 and ξ(t) = log(log t) are valid.
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To correct this “anomaly”, we need to impose some condition on the “second order terms”
of the weight a near r = 1. In the light of the former examples, it seems to us that condition
(1.9) below is optimal. Notice that considering (1.7), the estimate for γ > 2 is not exactly
what one would expect.

Corollary 1.7 Assume a verifies hypothesis (H), together with

∫ 1

0
(1− r)

∣∣∣∣∣a(r)− C0

(1− r)γ

∣∣∣∣∣ dr < +∞ . (1.9)

Then every positive solution u to (P) with m = 1 verifies

lim
r→1−

(1− r)σu(r) = θ (1.10)

if γ = 2, where σ = (−1 +
√
1 + 4C0)/2 and

lim
r→1−

u(r)

(1− r)
δ+1
2 e

√
C0(1−r)−δ/δ

= θ (1.11)

for γ > 2, where δ = (γ − 2)/2 and θ is some positive constant.

Remark 1.8 A “natural” way to proceed in view of Theorem 1.9 below is to solve problem
(P) with a(r) = C0(1 − r)−γ. However, in the simplest case N = 1, it turns out that the
point r = 1 is of singular irregular type, and the solutions could be in principle very badly
behaved in a neighbourhood of r = 1. Actually, except for a few exceptional γ’s for which
the solution is an explicit finite combination of powers and exponentials, this equation can be
solved in terms of power series of singular terms (see p. 401 in [15]) and this makes it almost
impossible to determine the behaviour of the blow-up solutions near r = 1. This behaviour is
obtained indirectly by means of Corollary 1.7. We quote that in the case γ = 4, the general
solution can be explicitly obtained by means of the rescaling v(r) = (1− r)u((1− r)−1).

Corollary 1.7 is a consequence of the following (general) sturmian reminiscent comparison
theorem, which is interesting in its own right.

Theorem 1.9 Let a, b be continuous functions in [r0, 1) for some 0 < r0 < 1, and assume

∫ 1

r0
(1− r)|a(r)− b(r)|dr < +∞ .

Let u, v be positive solutions to (rN−1u′)′ = rN−1a(r)u and (rN−1v′)′ = rN−1b(r)v in (r0, 1),
respectively, which are nondecreasing for r close to 1. Then

lim
r→1−

u(r)

v(r)
= θ ,

where θ is some positive constant.
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We finally remark that our proofs of existence and nonexistence (and multiplicity of
positive solutions when 0 < m ≤ 1) apply to some more general weight functions a(r). Also,
the nonlinearity um could be replaced by a continuous increasing function f(u), and some
more general operators (like the p-Laplacian) could be considered.

The paper is organized as follows: Section 2 contains some preliminary lemmas. To make
the exposition clear, we have distributed the cases m > 1, m < 1 and m = 1 in Sections 3,
4 and 5 respectively. Also, in each section the issues of existence, uniqueness or multiplicity
and estimates are treated separately.

2. Preliminary Lemmas

To carry out our analysis of the positive solutions to (P), it is natural to consider the solutions
to the following Cauchy problem,{

(rN−1u′)′ = rN−1a(r)um r ∈ (0, 1)
u(0) = u0, u′(0) = 0 ,

(C)

for u0 > 0. The next Lemma will be the basis of the later developments. We omit the proof,
which is a consequence of rather standard arguments.

Lemma 2.1 Assume m > 0 and a verifies (H). Then for every u0 > 0, there exists a unique
solution u to (C), defined in an interval [0, ω) with ω ≤ 1. This solution is positive and
increasing, and if u0 < v0, the corresponding solutions u(r), v(r) verify u(r) < v(r) in the
interval of definition of v.

We also quote that, by direct integration, solutions to (C) verify the following equation
for 0 ≤ r0 ≤ r < ω

u(r) = u(r0) + rN−1
0 u′(r0)

r
−(N−2)
0 − r−(N−2)

N − 2

+
∫ r

r0

∫ t

r0

(
s

t

)N−1

a(s)u(s)m ds dt , (2.1)

in the case N ≥ 3, and

u(r) = u(r0) + r0u
′(r0) log

(
r

r0

)
+
∫ r

r0

∫ t

r0

(
s

t

)N−1

a(s)u(s)m ds dt , (2.2)

for N = 2.

An important consequence of (2.1) and (2.2) is the next Lemma, that can also be proved
in a standard way. It states that a supersolution can never be reached by a solution from
above, nor a subsolution from below.

Lemma 2.2 Assume m > 0 and a verifies (H). Then if u is a solution to (C) and ū a
supersolution verifying ū(0) < u(0), we have ū(r) < u(r), whenever this inequality makes
sense. Similarly, if u is a subsolution with u(0) > u(0), then u(r) > u(r).

After these preliminaries we can begin to analyze all the different cases that can occur for
problem (P). We divide the study in several sections and subsections for the sake of clarity.
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3. The case m > 1

In this case the issues of existence and uniqueness are not changed by the appearance of a
singularity in a. The main difference in our situation is the rate of blow up in the boundary,
and we have to say that comparison techniques which have been used frequently before seem
to be useless in our problem.

3.1. Nonexistence for γ ≥ 2. Assume that we have a solution u to (P). Choose r0 ∈ (0, 1).
Then for r ∈ (r0, 1), we have

(rN−1u′)′ ≥ rN−1C(1− r0)
−γum ,

for some positive constant C. Putting v(r) = (C(1− r0)
2−γ)

1
m−1u(r0 + (1− r0)r), we obtain

that (rN−1v′)′ ≥ rN−1vm in (0, 1), that is, v is a subsolution to the equation (rN−1V ′)′ =
rN−1V m such that v(1) = +∞. Let V be the unique solution to this equation with V ′(0) = 0,
which blows up at r = 1/2 (see [3]). We claim that v ≤ V . Indeed, W = v − V satisfies
W ′(0) > 0 and W (1/2) = −∞. Thus W has an interior maximum in (0, 1/2). At this
maximum, (rN−1W ′)′ ≤ 0, which leads to W ≤ 0. Thus v ≤ V . We then conclude:

u(r0 + (1− r0)r) ≤ (C−1(1− r0)
γ−2)

1
m−1V (r) in (0, 1/2) . (3.1)

Setting, for example, r = 0 and then letting r0 → 1, we obtain that u is bounded at r = 1,
which is impossible. Notice that this argument shows indeed that for γ > 2 all solutions to
(C) are defined in an interval [0, w), with w < 1. �

3.2. Existence and estimates for γ < 2. We prove existence by using the method of sub and
supersolutions. This method is also valid for solutions which blow-up on the boundary, as
shown in Lemma 4 of [12]. We take as a supersolution the function ū = Λ(1 − r2)−α. An
easy calculation shows

∆ū− a(r)ūm ≤ Λ(1− r2)−α−2(4r2α(α+ 1) + 2αN(1− r2)− cΛm−1) ≤ 0 ,

provided that Λ is taken big enough, where we have used (1.2). Similarly, u = λ(1 − r2)−α

is a subsolution if λ is small enough. Thus problem (P) has at least a positive solution,
verifying u ≤ u ≤ ū.

Now let us see that the inequality u ≤ u ≤ ū is indeed valid for every positive solution u
to (P), with a convenient choice of λ and Λ. Notice that (3.1) holds when m > 1, regardless
of the values of γ. In particular, we have u ≤ Λ(1− r)−α.

To obtain the lower estimate, we multiply the equation in (P) by u′ and integrate in
(r0, r) for r0 close to 1. Using (1.2), we arrive at

u′(r)√
u(r)m+1 − u(r0)m+1

≤ u′(r0)√
u(r)m+1 − u(r0)m+1

+ C(1− r)−γ/2 ≤ C ′(1− r)−γ/2 ,

where C and C ′ stand for positive constants. Integrating this last inequality in (r0, 1), we
have ∫ +∞

u(r0)

dτ√
τm+1 − u(r0)m+1

≤ C ′(1− r0)
− γ−2

2
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(the integral is convergent since m > 1). Performing the change of variables τ = u(r0)s in
the integral leads to u(r0) ≥ λ(1− r0)

−α, where

λ =

(
1

C ′

∫ +∞

1

ds√
sm+1 − 1

) 2
m−1

.

This inequality is valid in [0, 1) (by diminishing λ if necessary). This shows u ≤ u ≤ ū.
Our next step is proving that every positive solution u to (P) verifies (1.3). For this sake,

we introduce the change of variables:

ρ :=


1

N − 2

(
1− 1

rN−2

)
, N ≥ 3

log r, N = 2 ,

(3.2)

which transforms our equation into u′′ = g(ρ)a(ρ)um in the interval (−∞, 0), where g(ρ) =
r2(N−1), and derivatives are taken with respect to ρ (with a slight abuse of notation we use
a(ρ) instead of a(r(ρ))). The asymptotic behaviour of a gives that limρ→0− g(ρ)a(ρ)(−ρ)γ =
C0. If we set u = (−ρ)−αv, the resulting equation for v can be written in the form

((−ρ)−2αv′)′ = (−ρ)−2(α+1)(g(ρ)a(ρ)(−ρ)γvm − α(α + 1)v).

Recall that 0 < λ ≤ v ≤ Λ. The further change of variables t = − log((−ρ)2α+1/(2α + 1))
leads to

v′′ + v′ = K(c(t)vm − v) in (−∞,∞) (3.3)

where K = α(α + 1)/(2α + 1)2, c(t) = (α(α + 1))−1g(ρ)a(ρ)(−ρ)γ. Since limt→+∞ c(t) =
C0/(α(α + 1)) =: c∞, in order to prove (1.3) it is enough to show that limt→+∞ v(t) = c∞.

In order to prove this, we assume first that v is monotone for large t. Then v has a finite
positive limit. Consequently the right-hand side in (3.3) also has a limit which we denote by
θ. We claim that θ = 0. Indeed if we assume θ > 0, then v′′ + v′ ≥ θ/2 for large t. A direct
integration then implies v → +∞ as t → +∞, contradicting the fact that v is bounded.
The case θ < 0 can be ruled out in a similar way. Hence θ = 0, and since v is bounded away
from zero, it follows that limt→+∞ v(t) = c∞.

It only remains to consider the case when v′ changes sign infinitely many times. Then
there exists a sequence of points {tn} such that v(t2n) is a local maximum and v(t2n+1) a
local minimum. Since v′(t2n) = v′(t2n+1) = 0, v′′(t2n) ≤ 0, v′′(t2n+1) ≥ 0, (3.3) implies

c(t2n+1)
− 1

m−1 ≤ v(t2n+1) ≤ v(t2n) ≤ c(t2n)
− 1

m−1 .

We conclude that limn→+∞ v(tn) = c∞. It follows that limt→+∞ v(t) = c∞. This finishes the
proof of (1.3). �

3.3. Uniqueness. Let u, v be arbitrary positive solutions to (P). If we denote w = u/v,
then w = 1 in r = 1, as the results in §3.2 show. Assume that the set B+ := {w > 1} is
nonempty. Then

v∆w + 2∇v∇w = a(r)vmw(wm−1 − 1) > 0
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in B+, and the maximum principle gives w(r) ≤ 1 in B+, a contradiction. This proves that
B+ is empty and so w ≤ 1. A similar argument gives w ≥ 1, and uniqueness gets proved. �

3.4. Nonexistence of nonradial solutions. Assume v is an arbitrary solution to (1.1). Then
by comparison it follows that v ≥ un, where un is the unique positive solution to (1.4) (see
Remark 1.2). This leads to v ≥ u, the unique solution to (P) given by Theorem 1.1.

On the other hand, let 0 < rn < 1 such that rn → 1 as n → +∞, and denote by vn the
(radial) solution to {

∆u = a(x)um in Bn

u = +∞ on ∂Bn ,

where Bn stands for the ball with radius 0 < rn < 1. This solution is already known to
be unique since the weight a is continuous in Bn (cf. [3]). Since v is a subsolution to this
problem, we have v ≤ vn. However, as n → +∞, we obtain that vn → u (by uniqueness)
and so v ≤ u, which gives u = v. �

4. The case m < 1

This case (which somehow will be found to be similar to m = 1) presents some very interest-
ing features of its own. Namely, we can prove that problem (P) has infinitely many positive
solutions, all of them with the same asymptotic profile near the boundary.

4.1. Nonexistence of solutions with 0 < γ < 2. Notice that, since a(r) is regular away from
r = 1 and m < 1, it is standard to conclude that the solutions u to (C) are defined at least
in [0, 1). Let us see that limr→1− u(r) is always finite. Assume first γ ̸= 1. Using (2.1) and
(2.2) with r0 = 0, and denoting uδ = sup[0,δ] u(r), we obtain

uδ ≤ u0 +
Cum

δ

γ − 1

(
1− (1− r)2−γ

2− γ
− r

)
,

where we have used (1.2). Since γ < 2 and m < 1, we conclude that uδ is always bounded.
When γ = 1, the only difference is that

uδ ≤ u0 + Cum
δ ((1− r) log(1− r) + r) ,

and the conclusion is the same. �

4.2. Existence and estimates for solutions. Assume for the moment γ > 2. Just like in
§3.2, it can be proved that u = λ(1− r2)−α and ū = Λ(1− r2)−α are sub and supersolution
respectively, but now for large λ and small Λ (thus ū ≤ u). Lemma 2.2 implies that if u
is a solution to (C) with ū(0) < u(0) < u(0), then ū(r) < u(r) < u(r), r ∈ [0, 1). This
in particular shows that u is a solution to (P). Since u(0) is arbitrary and λ and Λ can be
chosen arbitrarily large and small, respectively, we conclude that all solutions to (C) are
solutions to (P).

We now turn to the estimate (1.5). Notice that we already know that A := lim infr→1−(1−
r)αu(r) and B := lim supr→1−(1− r)αu(r) are positive and finite. The inequalities

A ≥
(

C0

α(α+ 1)

) 1
1−m

, B ≤
(

C0

α(α + 1)

) 1
1−m

,
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can be obtained through the procedure used in the case γ = 2 below, so we are not showing
the details. Estimate (1.5) is a direct consequence of these two inequalities.

Now let γ = 2. It is easily checked that ū = Λ(− log(1 − r))β is a supersolution when
Λ is small enough, and u = λ(− log(1 − r))β is a subsolution for λ large. Thus the same
reasoning as before proves that every solution to (C) is indeed a solution to (P). To prove
estimate (1.6) we let

A := lim inf
r→1−

u(r)

(− log(1− r))β
> 0 ,

and we are going to show that A ≥ (C0(1−m))
1

1−m . Let ε > 0 be small and r0 close to 1 so
that u(r) ≥ (A− ε)(− log(1− r))β and a(r) ≥ (C0 − ε)(1− r)−2 if r0 ≤ r < 1. Then

u(r) ≥ O(1) + (C0 + ε)(A+ ε)m
∫ r

r0

∫ t

r0
(1− s)−2(− log(1− s))βmds dt . (4.1)

Denote this integral by I(r). A change of variables together with integration by parts gives

I(r) = O(1) + (1−m)(− log(1− r))β − βm
∫ r

r0

∫ t

r0
(1− s)−2(− log(1− s))βm−1dsdt

≥ O(1) + (1−m)(− log(1− r))β +
βm

log(1− r0)
I(r) .

Thus coming back to (4.1), we obtain after letting r → 1,

A ≥ (C0 − ε)(A− ε)m(1−m)

1− βm
log(1−r0)

.

If we make r0 → 1 and ε → 0, we arrive at A ≥ (C0(1 −m))
1

1−m . The reversed inequality
for the upper limit is obtained similarly. This completes the proof. �

4.3. Construction of nonsymmetric solutions (Remarks 1.4 a)). Let us see that for the
one-dimensional version of (P) infinitely many nonsymmetric solutions can be constructed.
Indeed, consider the initial value problem

{
u′′ = a(r)um r ∈ (0, 1)
u(0) = u0, u′(0) = η ,

(4.2)

for u0 > 0, η ̸= 0. It follows in a standard fashion that problem (4.2) has a unique solution
uη which is continuous with respect to η (we will consider u0 as fixed). Thus, for any interval
[−r0, r0], we can select η small so that uη is conveniently close to u, solution to (4.2) with
the same value of u0 and η = 0. In particular, uη will be increasing and convex outside a
neighbourhood of r = 0. Now since the equation is sublinear, we can continue the solution
uη to the whole interval (−1, 1), and also limr→±1 uη(r) = +∞ (compare with §5.1). To
summarize, uη is always a solution to (P), which is not symmetric. �
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5. The linear problem

This last case is a complete analogue to m < 1 concerning the issues of existence and
multiplicity of positive solutions. The only point worth stressing is the difference in nature
of the asymptotic estimates near r = 1.

5.1. Existence and nonexistence of solutions. Let us see first that (P) has no positive
solutions if 0 < γ < 2. The proof is similar to that in §4.1. By linearity of the equation in
(C) and continuity of a(r) in [0, 1), we deduce that all solutions to (C) are defined in the
interval [0, 1). Now we are showing that they remain bounded as r → 1−. Assume N ≥ 3,
the case N = 2 being treated in the same way. Setting uδ = sup[r0,r0+δ] u(r) and using (2.1),
we arrive at

uδ ≤ u(r0) +
1

N − 2
r0u

′(r0) + uδ

∫ r

r0

∫ t

r0
a(s) ds dt .

Since this last integral converges if γ < 2, we can select r0 close to 1 so that it becomes less
than 1/2. Thus we have a bound for uδ, and (P) can never have positive solutions.

Now let γ ≥ 2. As quoted before, all solutions are defined in [0, 1). Let us see that
limr→1− u(r) = +∞. Indeed, this is an easy consequence of

u(r) ≥ u(0) +
Cu(0)m

γ − 1

(
(1− r)−(γ−2)

γ − 2
− r

)
when γ > 2 or

u(r) ≥ u(0)− Cu(0)m(log(1− r) + r)

for γ = 2, which are obtained from (2.1) and (2.2) with r0 = 0. Finally, notice that the
linearity of the equation and the uniqueness of solutions to (C) (see Lemma 2.1) imply that
all solutions are constant multiples of each other. �

5.2. Estimates (1.7) and (1.8). Let u be a solution to (P), and perform the change of
variables given by (3.2). In this way we consider now the one-dimensional problem u′′ =
g(ρ)a(ρ)u, ρ ∈ (−∞, 0). Let v = log u, and v′ = z. Then z is a solution to

z′ + z2 = g(ρ)a(ρ), ρ ∈ (−∞, 0) . (5.1)

Let z = (−ρ)−γ/2w (notice that w > 0, since u is increasing). We have for w the following
equation:

(−ρ)γ/2w′ = g(ρ)a(ρ)(−ρ)γ − w2 − γ

2
(−ρ)

γ−2
2 w .

If we set

w0(ρ) = −γ

4
(−ρ)

γ−2
2 +

1

2

√
γ2

4
(−ρ)γ−2 + 4g(ρ)a(ρ)(−ρ)γ

then it is clear that when w(ρ) > w0(ρ), w is decreasing, while it is increasing when w(ρ) <
w0(ρ). Thus it follows that

lim
ρ→0−

w(ρ) = lim
ρ→0−

w0(ρ) =


√
C0, γ > 2

−1 +
√
1 + 4C0

2
, γ = 2 .

Finally, estimates (1.7) and (1.8) are a consequence of l’Hôpital rule. �
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Remark 5.3 Equation (5.1) is a Riccati equation, which can not be solved in general. How-
ever, when we set in the right hand-side C(−ρ)−2, C > 0, we have the explicit solution:

z(ρ) = A(−ρ)−1 +
2A+ 1

ρ+ (2A+ 1)λ(−ρ)−2A
,

for λ ∈ R arbitrary, and A(A + 1) = C. By comparison we could use this solution to prove
estimate (1.8) (γ = 2).

5.3. Proof of Corollary 1.7. The function v(r) = (1 − r)−σ is a solution to (rN−1v′)′ =
rN−1b(r)v in (1/2, 1), where

b(r) =
C0

(1− r)2
+

N − 1

r
σ

1

(1− r)
.

Thus (1.10) follows from Theorem 1.9 and (1.9). This proves the case γ = 2.
The case γ > 2 is not so straightforward. For simplicity we consider N = 1 only,

since the N dimensional case can be treated with minor variations of the argument. The
idea is to select a weight b(r) so that (1 − r)|b(r) − C0(1 − r)−γ| is integrable and the
equation (rN−1v′)′ = rN−1b(r)v can be solved. For this sake we proceed inversely, and let
v(r) = eC(1−r)−δ+z(r), where z is to be determined and C =

√
C0/δ. It is easy to see that

(1− r)(b(r)−C0(1− r)−γ) = Cδ(δ+1)(1− r)−δ−1+2Cδ(1− r)−δz′+(1− r)(z′)2+(1− r)z′′.

In order to make this function absolutely integrable, we could think of choosing z′ so that
the first two terms vanish, that is z′ = −(δ + 1)(1− r)−1/2, but this will lead to

(1− r)(b(r)− C0(1− r)−γ) =
δ2 − 1

4
(1− r)−1 ,

which is only integrable if δ = 1, i. e. γ = 4 (see Remark 1.8). However, the behaviour of this
term is better than before, and this leads us to consider instead z′ = −(δ+1)(1−r)−1/2+h′,
getting that

(1−r)(b(r)−C0(1−r)−γ) =
δ2 − 1

4
(1−r)−1+2Cδ(1−r)−δh′+(1−r)(h′)2−(δ+1)h′+(1−r)h′′ .

With the final choice h′ = −(δ2 − 1)(1− r)δ−1/8Cδ, we obtain that

(1− r)(b(r)− C0(1− r)−γ) =
(δ2 − 1)2

64C2δ2
(1− r)2δ−1 +

δ2 − 1

4C
(1− r)δ−1

is always absolutely integrable, since δ > 0. To summarize, the function v(r) = (1 −
r)

δ+1
2 eC(1−r)−δ

e(δ
2−1)(1−r)δ/8C solves v′′ = b(r)v, and condition (1.9) together with Theorem

1.9 give that for every positive solution u to (P) with N = 1

lim
r→1−

u(r)

v(r)
= θ ,

for some positive constant θ, but this is precisely (1.11). This proves the Corollary. �
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5.4. Proof of Theorem 1.9. Introducing the change of variables given by (3.2), we can
consider the problems u′′ = g(ρ)a(ρ)u, v′′ = g(ρ)b(ρ)v in some interval (l, 0), l < 0, where g
is positive, increasing and continuous with g(0) = 1. We fix l < ρ0 < 0 and set

F (ρ) =
∫ ρ

ρ0

1

v(s)2
ds, G(ρ) = F−1(ρ) .

Then F is a differentiable, increasing positive function with values in [0, d], for some d > 0.
Similarly, G is differentiable, increasing and negative, with values in [ρ0, 0]. For r ∈ (0, d)
we define the function

w(r) =
u(G(r))

v(G(r))
.

A little algebra shows that w is a solution to the equation

w′′ = g(G(r))(a(G(r))− b(G(r)))v(G(r))4w(r), r ∈ (0, d) .

Integrating twice this equation in the interval (0, r) and letting wδ = sup[0,δ]w(r), we obtain

w(r) ≤ w(0) + |w′(0)|δ + wδ

∫ r

0

∫ t

0
g(G(τ))|a(G(τ))− b(G(τ))|v(G(τ))4 dτ dt.

An application of Fubini’s theorem together with the change of variables σ = G(τ) leads to

w(r) ≤ w(0) + |w′(0)|δ + wδ

∫ G(r)

ρ0
(d− F (σ))g(σ)|a(σ)− b(σ)|v(σ)2 dσ .

Notice that d = F (0) and v′ ≥ 0, so it can be shown by l’Hôpital rule that (d−F (σ))v(σ)2 ≤
C(−σ). Thus the integral in the right-hand side of the above formula converges as r → d by
(1.9) (we recall that g(0) = 1), and we can take ρ close enough to zero so that it is less than
1/2. This entails an upper bound for w. Proceeding similarly with w̃(r) = v(G(r))/u(G(r))
we get a lower bound.

Thus it only remains to show that w has a limit when r → d−. Assume that there exist
infinite sequences of points {sn} and {tn} converging to d, such that sn < tn, and w attains
local maxima and minima in sn and tn, respectively. Then, integrating the equation for w
in (sn, tn), we have

w(sn)− w(tn) ≤ M
∫ tn

sn

∫ t

0
g(G(τ))|a(G(τ))− b(G(τ))|v(G(τ))4 dτ dt,

where M = supw. The last integral tends to zero as n → ∞, by (1.9) and so the claim
follows. This proves the theorem. �
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